

AN407 Version 1.01

AN407 – Using Axiomatic's Protocol Converter with Aurigo Steering Wheel F202

Introduction

Axiomatic Technologies' AX140200 module can be used in conjunction with the Aurigo CAN Steering Wheel version F202 to convert messages from CANopen[®] to J1939 without a CANopen[®] master on the network. The module can be modified by its user to function as desired.

RPDO1

By default, RPDO1 uses COB-ID 200+node-id, and the default node-id of the converter's CANopen[®] port is 10 (0x0A). Since the RPDOs are active by default, the RPDO1 COB-ID has a value of 0x4000020A. The leading byte with value '4' means that the RPDO is active.

The default mapping for RPDO1 is 1 entry of 0x20000120. Breaking the mapping entry down into its smaller parts shows that:

Data Size= 0x20 = 32 bitsData location= object 0x2000Sub-index= 0x01

So RPDO1 is expecting to receive a message with identifier 0x20A from the CANopen[®] bus, holding one 32bit data, and it will store the data at object 0x2000_sub-index_1.

For example: users could change the RPDO1 mapping to accept 4 X 16bit data signals on the 0x20A message.

AN407

RPDO Mapping Parameters

In order to access the RPDO mapping parameters users must first destroy the RPDO. Users can do this by writing a 'C' value as the leading byte of the COB-ID.

• set RPDO1 'COB-ID' = 0x**C**000020A (destroy RPDO1)

SP RPDO 1 COB-ID	0xc000020a	
SP RPDO 1 Transmission	255	
SP RPDO 1 Inhibit Time	0	
SP RPDO 1 Compatibility Entry	0	
SP RPDO 1 Event Timer	0	

- Set RPDO1 'Number of Mapped Objects' = 0 (this opens access to the mapping objects. Users should do this if they are configuring by CANopen[®] SDO writes. If they are using the Axiomatic EA software, then this is not needed)
- Set RPDO1 'Mapping Entry #1' = 0x20000110 (this means: 'store a 16-bit data in object 0x2000_sub-index_1')
- Set RPDO1 'Mapping Entry #2' = 0x20000210 (this means: 'store a 16-bit data in object 0x2000_sub-index_2')
- Set RPDO1 'Mapping Entry #3' = 0x20000310 (this means: 'store a 16-bit data in object 0x2000_sub-index_3')
- Set RPDO1 'Mapping Entry #2' = 0x20000410 (this means: 'store a 16-bit data in object 0x2000_sub-index_4')
- Set RPDO1 'Number of Mapped Objects' = 4 (now there are four mapped entries)

SP RPDO 1 Number of Mapped Objects	4
SP RPDO 1 Mapping Entry #1	0x20000110
SP RPDO 1 Mapping Entry #2	0x20000210
SP RPDO 1 Mapping Entry #3	0x20000310
SP RPDO 1 Mapping Entry #4	0x20000410

• Set RPDO1 'COB-ID' = 0x4000020A (activate RPDO1)

SP RPDO 1 COB-ID	0x4000020a			
SP RPDO 1 Transmission	255			
SP RPDO 1 Inhibit Time	0			
SP RPDO 1 Compatibility Entry	0			
SP RPDO 1 Event Timer	0			

So now with that done, RPDO1 should be sent on ID 0x20A and contain four 16-bit data signals.

AN407 Version 1.01

Creating A J1939 Message to Send

Users can create a J1939 message to transmit those four data signals that were received from the CANopen® bus.

Users can do this by editing the CAN Output Message #1 settings. At the start of the settings, users should activate the message to send at 100ms.

Then, users should assign the first signal to be sent as 16-bit data, starting at byte 0 (so it will use the first two-byte positions), and assign the Data Source as CANopen[®] RPDO message 1, and sub-index 1. Here is a screen capture from the Axiomatic EA setup:

Electronic Assistant			<u> </u>				
<u>File View Options H</u> elp							
* - F							
🖃 — J1939 CAN Network	Setpoint Name	Value	Comment				
ECU AX140200, J1939-CANopen-ModbusRTU Conve	CAN Interface #1						
- i General ECU Information	SP Transmit Message PGN	0xf000					
🖃 🗐 Setpoint File	SP Use 11-bit ID	False					
	SP Transmit Message Enabled	Yes					
SP CAN Output Message #2	SP Transmit Trigger Source	Constant Rate					
SP CAN Output Message #3	SP Transmit Trigger Source Parameter	0	Not used in this mode				
SP CAN Output Message #4	SP Transmission Rate	100	[ms]				
SP CAN Output Message #5	SP Transmit Message Priority	6					
ST CAN Output Message #6	SP Override Source Address	No					
ET CAN Output Message #7	SP Source Address	128					
ET CAN Output Message #7	SP Input #1 Signal Source						
EN CAN Output Message #0	SP Input #1 Data Inverted						
SP CAN Output Message #9	SP Input #1 Byte Order	Contact ECU Manufacturer for firmware update					
SP CAN Output Message #10	SP Input #1 Signal Type Continuous						
	SP Input #1 Byte Position	0					
	SP Input #1 Bit Position						
	SP Input #1 Data Size						
	SP Input #1 Resolution	[Signal Units / Bit]					
	SP Input #1 Offset	0	[Signal Units]				
	SIP Input #1 Maximum Value	64255	[Signal Units]				
	SP Input #1 Minimum Value	0	[Signal Units]				
	SP Input #1 Modbus Type	Coil Status	Not used in this mode				
SP CAN Input Signal #7	SP Input #1 Modbus Address	0	Not used in this mode				
SP CAN Input Signal #8	SP Input #1 Modbus Data Resolution	1	Not used in this mode				
SP CAN Input Signal #9	SP Input #1 Modbus Data Offset	0	Not used in this mode				
SP CAN Input Signal #10	SP Input #1 Modbus Maximum	65535	Not used in this mode				
SP CAN Input Signal #11	SP Input #1 Modbus Minimum	0	Not used in this mode				
GD CAN Input Signal #12	SP Input #1 CANopen Message Number	1					
WE CAN I and Const #12	SP Input #1 CANopen Message Subindex	1					

The byte position is shifted by 2-bytes every time, and the CANopen[®] RPDO sub index is incremented by 1 every time. So, this process basically puts all four of those RPDO mappings side by side in the J1939 message.

AN407

Version 1.01

Test Results

In this example, an RPDO with ID = 20A and with four 16-bit signals: AA AA, BB BB, CC CC, DD DD has been sent on the CANopen[®] network side.

See CAN Assistant - Scope										-				
<u>F</u> ile	<u>C</u> ommar	nd <u>V</u> iew O <u>p</u> tions	Help											
CAN	👳 stop	4 2 5 0												
N	umber	Diff. Time [ms]	ID	E	R	Len	D0	D1	D2	D3	D4	D5	D6	D7
CAN	1	267049	70A			1	00							
CAN	2	12469	20A			8	AA	AA	BB	BB	сс	сс	DD	DD

Here is the J1939 message holding the four 16-bit data passed through the converter:

82	CAN Assis	tant - Scope												-		×
<u>F</u> ile	<u>C</u> omma	nd <u>V</u> iew O <u>p</u> tions	<u>H</u> elp													
CAN	i 🔍 stop	4 2 5 0														
	Number	Diff. Time [ms]	ID	E	R	Len	DO	D1	D2	D3	D4	D5	D6	D7	Text	~
CAN	8465	97	18F00080	+		8	AA	AA	BB	BB	CC	cc	DD	DD	aa _{≫≫} ÌÌÝÝ	
CAN	8466	93	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{sse} j]ýý	
CAN	8467	100	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{ww}]]ýý	
CAN	8468	94	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{ww}]]ýý	
CAN	8469	100	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{ww}]]ýý	
CAN	8470	93	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{ww}]]ýý	
CAN	8471	97	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{ww} jjýý	
CAN	8472	95	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{»»}]]ýý	
CAN	8473	95	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{»»}]]ýý	
CAN	8474	<mark>9</mark> 6	18F00080	+		8	AA	AA	BB	BB	CC	CC	DD	DD	aa _{∞∞}]]⁄γ́γ́	

Connecting Cable

Axiomatic Technologies' AX140200 module employs two male 8-pin M12 (5') cables. These are the straight connector (not right angle). The connectors are not shielded.

The links below are to supplier websites, where users can purchase the specified cables:

TE Connector Cable Digi Key Cable

AN407

Version 1.01

Version	Date	Authors	Comments
1.00	September 17, 2019	Sue Thomas / Greg Laronde	Initial Release
1.01	July 6, 2023	Kiril Mojsov	Legacy Updates & Marketing Review; Fixed the TE Connector Cable link

Note: CANopen[®] is a registered community trademark of CAN in Automation e.V.