
     

 

 
 
 

User Manual UMAX140910 
Version 4.0 

Software Support Package 4.0.xx 

 
 
 
 
 
 
 
 
 
 
 
 

USER MANUAL 
 
 

CAN-ENET 
Software Support Package 

 
P/N: AX140910 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 

 

UMAX140910. CAN-ENET Software Support Package. Version 4.0 

ii 

ACRONYMS 
 
API Application Programming Interface 

ASCII American Standard Code for Information Interchange 

BSD Berkeley Software Distribution 

CAN  Controller Area Network 

HTML HyperText Markup Language 

IP Internet Protocol  

LAN Local Area Network 

SSP Software Support Package 



 

 

 

UMAX140910. CAN-ENET Software Support Package. Version 4.0 

iii 

TABLE OF CONTENTS 
 
1 GENERAL INFORMATION .................................................................................................. 4 

2 SSP CONTENTS ................................................................................................................. 5 

2.1 Source Files ....................................................................................................................... 5 

2.2 Examples ........................................................................................................................... 6 

3 DATA TYPES AND CODING STYLE .................................................................................. 7 

4 USING SSP ......................................................................................................................... 8 

4.1 Receiving Messages from the Converter ........................................................................... 8 

4.2 Sending Messages to the Converter ................................................................................ 11 

4.3 Discovering the Converter ............................................................................................... 12 

5 DOCUMENTATION ........................................................................................................... 14 

6 LICENSE ........................................................................................................................... 15 

7 VERSION HISTORY .......................................................................................................... 16 

 

 
 

 
 



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 4-16 

1 GENERAL INFORMATION 

The CAN-ENET Software Support Package (SSP) provides a set of software modules, 
documentation, and examples for developing application software working with various 
Axiomatic Ethernet to CAN and Wi-Fi to CAN converters. 
 
The user manual is valid for the SSP with the same two major version numbers as the user 
manual. For example, this user manual is valid for any SSP version 4.0.xx. Updates specific to 
the user manual are done by adding letters: A, B, …, Z to the user manual version number. 
 
All SSP software modules are written in a standard C programming language for portability 
and fully documented. They provide support for Axiomatic proprietary Communication and 
Discovery protocols. The Communication protocol is mainly used for transmitting CAN 
messages over Ethernet or any other IP network, and the Discovery protocol – for locating the 
converter on the LAN. 
 
The SSP can be equally used for programming embedded systems with limited resources and 
for application programming in Windows or Linux. 
  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 5-16 

 

2 SSP CONTENTS 

The SSP is distributed as a zip file with the name: CANEnetSSPv<X.X.XY>.zip, where 

<X.X.X> numbers refer to the SSP main version number and <Y> – to the optional 

documentation change letter.  
 
To avoid potential issues with displaying the SSP help file, the distribution zip file should be 

unblocked in Windows if acquired over the internet (after downloading from the Axiomatic 
website, receiving in e-mail as an attachment, etc.) This can be done by right-clicking the file 
and pressing the Unblock button in Properties->General->Unblock. 
 
After extracting the zip archive, the following folder structure will be created: 

 

Figure 1. Folder Structure for SSP version 4.0.0 

 
The root directory contains the SSP help file CANEnetSSP.chm in the Microsoft HTML help 

format and this user manual UMAX140910v4.0.pdf in the Adobe Reader format. 

 
The most significant SSP version number reflects incompatible changes, next – compatible 
changes, the last one – minor changes not affecting the SSP functionality. The optional letter is 
added for changes in the user manual and/or help file. 

2.1 Source Files 

The SSP source files are grouped in .\Source  and .\Inc  directories according to their 

type. They are written in standard C and present the following software modules: 

• PMessage. Provides support for the protocol independent message structure described in 
the Ethernet to CAN Converter Communication Protocol. 

• CommProtocol. Supports messages from the Ethernet to CAN Converter Communication 
Protocol. 

• DiscProtocol. Supports messages from the Ethernet to CAN Converter Discovery 
Protocol. 

• HealthData. Provides data structures and functions for processing the Ethernet to CAN 
converter health status information described in the Ethernet to CAN Converter 
Communication Protocol. 

 
All basic data types and common macros are defined in the CommonTypes.h file. 



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 6-16 

2.2 Examples 

The SSP also contains the following example programs in the .\Examples  directory 

demonstrating different scenarios of communication with the Axiomatic Ethernet to CAN 
converter: 

• CANReceive.c. This console application shows how CAN frames can be received from 

the Axiomatic Ethernet to CAN converter. 

• CANSend.c. This example demonstrates how CAN frames can be sent to the Axiomatic 

Ethernet to CAN converter. 

• Discovery.c. This example application shows how the user can discover an Axiomatic 

Ethernet to CAN converter on the local area network (LAN). 

• Heartbeat.c. This application demonstrates how Heartbeat messages can be received 

from the Axiomatic Ethernet to CAN converter. It also shows unpacking of the Health Data 
from Heartbeat messages. 

• StatusRequest.c. This example application shows how the user can request the 

Axiomatic Ethernet to CAN converter status. 
 

All examples can be built on Microsoft Windows or Linux using Windows.mk or Linux.mk 

make files. The make files are also located in the .\Examples  directory.  

 
Upon building executable files, the make script, if necessary, creates .\Bin  subdirectory in 

the .\Examples  directory where it places all executable and object files. The SSP zip file 

contains compiled examples for Windows in the .\Bin  subdirectory. 

 
All SSP examples were tested on Windows 10 and Linux Ubuntu 16.04. 
  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 7-16 

 

3 DATA TYPES AND CODING STYLE 

The SSP uses only int and char standard data types. The int type is used when the exact 

or maximum data size for the integer parameter is not critical. The char type is used to point 

to an ASCII string or reference a single ASCII character. Other basic types are derived from 
<stdint.h> header and have the exact data size, except the Boolean type BOOL_t, which is 

derived from int, see: CommonTypes.h file. 

 
All SSP exported basic types are named with capital letters and have the '_t' ending. For 

example: BOOL_t, WORD_t, etc. 

 
All other exported types are named with capital letters, have the '_t' ending and are prefixed 

with the file abbreviation for the file they are defined in. The 'CP' is used for the 

CommProtocol.h, 'DP' - for the DiscProtocol.h, 'HD' - for the HealthData.h and 

'PM' - for the PMessage.h file. 

 
All macros names use capital letters and are prefixed with the file abbreviation for the file they 
are defined in, the same way as data types. The 'CT' abbreviation is used for the 

CommonTypes.h file. 

 
The variable names are prefixed with their type for basic types and pointers. For example: int 

type is prefixed with 'i', pointer type - with 'p', pointer to integer - with 'pi', etc. 

Structures, unions, enumerators are not prefixed. For zero terminated strings, the 'sz' prefix 

is used. 
 
The function names are prefixed with the file abbreviation the same way as data types and 
macros. 
 
One tab is equal to four spaces. 
  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 8-16 

4 USING SSP 

The user should add the SSP files to the application project. The CommProtocol.c or 

DiscProtocol.c can be excluded if the appropriate protocol is not used. The 

HealthData.c can also be excluded if there is no need to process the converter health data. 

 
The SSP does not require initialization prior to use. It does not have any global variables. All 
SSP functions are thread-safe and reentrant. 
 
For sending and receiving converter messages, a support of the Internet protocol (IP) is 
required. A standard way to provide this support is to use Internet sockets. The socket API is 
well standardized and is used in all SSP examples and for description of the converter 
operations. 

4.1 Receiving Messages from the Converter 

The user should first prepare a socket for receiving the converter data. 
 
When the data is received, it should be passed to the PMParseFromBuffer() function. The 

user provides two callback functions: OnDataParsed()  and OnDataParsedError(). The 

first function is invoked after the protocol message has been successfully parsed and the 
second one – on the parsing error. 
 
Then, the user should call parsers for individual protocol-specific messages inside the 
OnDataParsed() function, see below: 

 
BYTE_t RxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE]; 

PM_PROTOCOL_PARSER_t PParser; 

int iBytesReceived; 

 

/* Initializing the parser */ 

memset(&PParser, 0, sizeof(PParser)); 

 

/** Receiving data in the RxData buffer. 

  * iSocket - the socket descriptor. The socket should be already initialized and ready  

  * for receiving. 

  * 

  */ 

iBytesReceived = recv(iSocket, RxData, sizeof(RxData), 0); 

if(iBytesReceived > 0) 

{ 

    /** Data has been successfully received. 

      * Now we are calling the protocol message parser. 

      * 

      */ 

    PMParseFromBuffer(RxData, iBytesReceived, &PParser, OnDataParsed, OnDataParsedError, 

                      NULL); 

} 

 

/* This function is called after the protocol message has been successfully parsed. */ 

void OnDataParsed(PROTOCOL_MESSAGE_t *pPMessage, void *arg) 

{ 

    DWORD_t dwHealthData, dwCANRxDErrors, dwCANTxDErrors, dwCANBusOffErrors; 

    DWORD_t dwMessageNumber, dwTimeInterval; 

    CP_CONVERTER_TYPE_t ConverterType; 

    DWORD dwCommNodeSupportedFeatures; 

    CP_COMMUNICATION_NODE_FILTER_LIST_t CommNodeFilterList; 

 



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 9-16 

    /* Parsing Communication Protocol Messages. */ 

 

    /** Parsing CAN FD Stream. Added in SSP version 3.0.0. 

      * 

      * The CPParseCANFDStream() parser is provided with a callback function which is  

      * called on successful parsing of a CAN FD frame. The CAN FD frame can also contain  

      * a Classical CAN frame. 

      * The callback functions can be called multiple times if several CAN FD frames are 

      * embedded in one protocol message. 

      * 

      */ 

    if(CPParseCANFDStream(pPMessage, OnCANFDFrameParsed, arg)) 

    { 

        /* The CAN FD Stream has been parsed. Add your code here if necessary. */ 

 

        return; 

    } 

 

    /** Parsing CAN and Notification Stream. Deprecated in SSP v3.0.0 and used only for 

      * compatibility with older software. The new software should use CAN FD Stream  

      * with CPParseCANFDStream() parser. 

      * 

      * The CPParseCANDataAndNotificationStream() parser is provided with two callback  

      * functions, which are called on successful parsing of CAN or Notification frames.  

      * The callback functions can be called multiple times if several CAN or Notification 

      * frames are embedded in one protocol message. 

      * 

      */ 

    if(CPParseCANDataAndNotificationStream(pPMessage, OnCanFrameParsed,  

                                           OnNotificationFrameParsed,arg)) 

    { 

        /* The CAN and Notification Stream has been parsed. Add your code here  

           if necessary. */ 

 

        return; 

    } 

 

    /** Parsing Communication Protocol Status Request Message. 

      */ 

    if(CPParseStatusRequest(pPFrame) 

    { 

        /** The Status Request Message has been received. 

          * 

          * Reply with Status Response Message to let the requesting node know whether  

          * the CAN FD stream is supported by your node and convey other communication 

          * settings to the requested node. Nodes supporting CAN FD Stream will not start 

          * sending CAN frames to your node until they acquire communication settings  

          * of your node either through a Status Response or a Heartbeat message. 

          * 

          * Add your code here. 

          * 

          */ 

 

        return; 

    } 

 

    /** Parsing Communication Protocol Status Response Message. 

      */ 

    if(CPParseStatusResponse(pPFrame, &dwHealthData, &dwCANRxDErrors, &dwCANTxDErrors, 

                             &dwCANBusOffErrors,&ConverterType, 

                             &dwCommNodeSupportedFeatures,&CommNodeFilterList)) 

    { 

        /** The Status Response Message has been parsed. 

          * 

          * dwCommNodeSupportedFeatures and CommNodeFilterList structure contain 

          * communication settings of the node.  

          * dwCommNodeSupportedFeatures defines whether the node supports CAN FD Stream  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 10-16 

          * (CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM flag is set) and if the node requests 

          * only one CAN FD Frame per Ethernet frame 

          * (CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE flag is set) 

          * CommNodeFilterList structure contains filter addresses to filter CAN FD  

          * Frames sent to the node. 

          * 

          * Add your code here. 

          * 

          */ 

 

        return; 

    } 

 

    /** Parsing Heartbeat Message. 

      */ 

    If(CPParseHeartbeat(pPFrame, &dwMessageNumber, &dwTimeInterval, &dwHealthData, 

                        &ConverterType,&dwCommNodeSupportedFeatures,&CommNodeFilterList)) 

    { 

        /** The Heartbeat Message has been parsed. 

          * 

          * dwCommNodeSupportedFeatures and CommNodeFilterList structure contain 

          * communication settings of the node.  

          * dwCommNodeSupportedFeatures defines whether the node supports CAN FD Stream  

          * (CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM flag is set) and if the node requests 

          * only one CAN FD Frame per Ethernet frame 

          * (CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE flag is set). 

          * CommNodeFilterList structure contains filter addresses to filter CAN FD  

          * Frames sent to the node. 

          * 

          * Add your code here. 

          * 

          */ 

 

        return; 

    } 

 

    /** Unknown protocol message 

      * 

      */ 

    printf("Error. Unknown protocol message. ProtocolID=%u MessageID=%u\n",  

           pPMessage->wProtocolID, pPMessage->wMessageID); 

} 

 

/** This function is called after a CAN FD frame has been successfully parsed. 

  * The CP_CAN_FD_FRAME_t structure contains either CAN FD or Classical CAN frame. 

  */ 

void OnCANFDFrameParsed(CP_CAN_FD_FRAME_t *pCANFDFrame,CP_CAN_FRAME_ROUTING_DATA_t  

                        *pCANFrameRoutingData,DWORD_t dwAbsTimeStamp,void *arg) 

{ 

    /* Add your code here */ 

} 

 

/** This function is called after a Classical CAN Frame has been successfully parsed. 

Deprecated in SSP v3.0.0 

  * 

  */ 

void OnCanFrameParsed(CP_CAN_FRAME_t *pCANFrame,void *arg) 

{ 

    /* Add your code here */ 

} 

 

/** This function is called after a Notification Frame has been successfully parsed. 

  * Deprecated in SSP v3.0.0 

  */ 

void OnNotificationFrameParsed(CP_NOTIFICATION_FRAME_t *pNotificationFrame,void *arg) 

{ 

    /* Add your code here */ 



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 11-16 

} 

 
If the user wants to parse the dwHealthData value into individual operational statuses of the 

converter major hardware and software components, the HDUnpackHealthData() function 

should be called: 
 
DWORD dwHealthData; 

HD_HEALTH_DATA_t HealthData; 

CP_CONVERTER_TYPE_t ConverterType; 

HD_OPERATIONAL_STATUS_t ConverterHealthStatus; 

 

ConverterHealthStatus = HDUnpackHealthData(dwHealthData, &HealthData, ConverterType); 
 
This function also returns the converter aggregated Health Status. 

4.2 Sending Messages to the Converter 

User messages can be sent to the converter by first generating the required protocol message 
and then copying the message to the transmitting buffer. For example, sending a status 
request will require the following commands: 
 
BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE]; 

PM_PROTOCOL_MESSAGE_t PMessage; 

BOOL_t bResult; 

int iBytesToSend; 

int iBytesSent; 

 

/* Preparing the Status Request message. */ 

CPGenStatusRequestMessage(&PMessage); 

/* Copying the message to the transmit buffer TxData. */ 

bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend); 

assert(bResult); 

 

/* Sending the Status Request message. 

   iSocket - the socket descriptor. The socket should be already initialized and 

   ready for sending. */ 

iBytesSent=send(iSocket, TxData, iBytesToSend,0); 

 

Sending CAN FD frames is more elaborated. The CAN FD Stream message can contain more 
than one CAN FD or Classical CAN frame, unless 
CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE 
flag is set by the node in the Status Response or Heartbeat message. It is also highly desirable 
to check whether the node will accept the frame before preparing and sending it.  
 
To send a CAN FD frame, the user should first prepare an empty CAN FD Stream message 
and then add CAN frames to it. 
 
BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE]; 

PM_PROTOCOL_MESSAGE_t PMessage; 

CP_CAN_FD_FRAME_t CANFDFrame; 

CP_CAN_FRAME_ROUTING_DATA_t CANFrameRoutingData; 

DWORD_t dwAbsoluteTimeStamp; 

BOOL_t bResult; 

int iBytesToSend; 

int iBytesSent; 

 

/** Checking whether the CAN FD Stream will be accepted by the node. 

  * 

  * dwCommNodeSupportedFeatures and CommNodeFilterList values should be already  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 12-16 

  * acquired from the node in Status Response and Hearbeat messages. If not, the values  

  * of dwCommNodeSupportedFeatures and CommNodeFilterList should be all 0, and the CAN FD 

  * Stream will not be sent. 

  * 

  */ 

if((CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM &  

    dwCommNodeSupportedFeatures)==0) return; // CAN FD Stream will not be sent 

 

/* Preparing an empty CAN FD Stream message */ 

CPPrepareCANFDStream(&PMessage); 

 

/** Adding CAN frames to the CAN FD Stream. 

  * 

  * CPIsCANFDFrameFit() checks if there is enough room for the CAN FD frame to fit into  

  * the CAN FD Stream. If only Classical CAN frames are used, CPIsCANFDFrameFit() can be 

  * replaced with CPIsCANClassicalCANFDFrameFit(). 

  * CANGetFDFrame() gets a CAN FD frame (or a Classical CAN frame in the CAN FD Frame 

  * format), CAN frame routing data, and an absolute timestamp (in ms) from a CAN port  

  * driver or from another source. 

  * CPAddCANFDFrame() adds CAN FD frame to the stream. 

  *  

  */ 

   

while(CPIsCANFDFrameFit(&PMessage)) 

{ 

    CANGetFDFrame(&CANFDFrame,&CANFrameRoutingData,&dwAbsoluteTimeStamp); 

 

    if(!CPIsCANAddressPassCommNodeFilter(&CANFrameRoutingData.CANAddr, 

        &CommNodeFilterList)) break; 

   

    CPAddCANFDFrame(&PMessage,&CANFDFrame,&CANFrameRoutingData,dwAbsoluteTimeStamp); 

    if((CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE &  

        dwCommNodeSupportedFeatures)>0) break; 

} 

 

/* Copying the message to the transmit buffer TxData. */ 

bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend); 

assert(bResult); 

 

/** Sending the CAN FD Stream message. 

  * 

  * iSocket - the socket descriptor. The socket should be already initialized and 

  * ready for sending. 

  * 

  */ 

iBytesSent=send(iSocket, TxData, iBytesToSend,0); 

 
If the TCP protocol is used, the TCP_NODELAY option should be set to the socket to avoid 

delays in sending protocol messages. 

4.3 Discovering the Converter 

The converter can be discovered using the Ethernet to CAN Converter Discovery Protocol. 
The user should do the following: 

• Open a datagram socket with the SO_BROADCAST option. 

• Prepare a discovery request and copy it to the transmitting buffer. 

• Send the discovery request to the global IP address. 

• Wait for the incoming discovery responses from converters located on the same LAN. 

• Parse the responses first by PMParseFromBuffer() and then by DPParseResponse() 

called from OnDataParsed() . 

 



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 13-16 

A simplified example code illustrating the concept is presented below: 
 
BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE]; 

BYTE_t RxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE]; 

PM_PROTOCOL_MESSAGE_t PMessage; 

PM_PROTOCOL_PARSER_t PParser; 

struct sockaddr_in SocketAddress; 

 

BOOL_t bResult; 

int iBytesToSend; 

int iBytesSent; 

int iBytesReceived; 

 

/* Preparing the Discovery Request message. */ 

DPGenRequestMessage(&PMessage); 

/* Copying the message to the transmit buffer TxData. */ 

bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend); 

assert(bResult); 

 

/* Preparing the global socket address */ 

memset(&SocketAddress, 0, sizeof(SocketAddress)); 

SocketAddress.sin_family = AF_INET; 

SocketAddress.sin_addr.s_addr = inet_addr("255.255.255.255"); 

SocketAddress.sin_port = htons(DP_DISCOVERY_PORT); 

 

 /* Initializing the parser */ 

 memset(&PParser, 0, sizeof(PParser)); 

 

/* Sending the Discovery Request message to the global address. 

   iSocket - the socket descriptor. The socket should be already initialized and 

   ready for sending to the global address. */ 

iBytesSent = sendto(iSocket, TxData, iBytesToSend, 0, (struct sockaddr *) &SocketAddress, 

                    sizeof(SocketAddress)); 

if (iBytesSent != SOCKET_ERROR) 

{ 

    /* Now we are waiting for the reply from the converter */ 

 

    iBytesReceived = recv(iSocket, RxData, sizeof(RxData), 0); 

    if (iBytesReceived > 0) 

    { 

        /* Reply has been arrived. Parsing it. */ 

        PMParseFromBuffer(RxData, iBytesReceived, &PParser, OnDataParsed, NULL, NULL); 

    } 

} 

 

/* This function is called after the protocol message has been successfully parsed. */ 

void OnDataParsed(PROTOCOL_MESSAGE_t *pPMessage, void *arg) 

{ 

    DP_DISCOVERY_DATA DiscData; 

 

    /* Parsing the Discovery Response Message. */ 

    if (DPParseResponse(pPMessage, &DiscData)) 

    { 

        /* The Discovery Response Message has been successfully parsed. 

           The converter information is in the DiscData structure. 

           Add your code here to process this information. */ 

 

    } 

} 

  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 14-16 

5 DOCUMENTATION 

The following documents describing the Axiomatic proprietary protocols used in the SSP are 
available upon request: 

• O. Bogush, "Ethernet to CAN Converter Communication Protocol. Document version: 6," 
Axiomatic Technologies Corporation, April 22, 2025. 

• O. Bogush, "Ethernet to CAN Converter Discovery Protocol. Document version: 1A," 
Axiomatic Technologies Corporation, April 5, 2021. 

• O. Bogush, " Ethernet to CAN Converter Health Status. Document version: 4," Axiomatic 
Technologies Corporation, April 22, 2025. 
 

For requesting the documents, please contact Axiomatic Technologies at: 
sales@axiomatic.com  

mailto:sales@axiomatic.com


 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 15-16 

6 LICENSE 

The SSP software is distributed with a permissive 3-clause BSD License. The text of the 
license is included in the software files. 
 
  



 

UMAX140910. CAN-ENET Software Support Package. Version 4.0    Page: 16-16 

7 VERSION HISTORY 

User 
Manual 
Version 

SSP 
version 

Date Author Modifications 

4.0 4.0.0 April 23, 
2025 

Olek 
Bogush 

• Changed communication node setting 
parameters in Status Response and Heartbeat 
messages.  

• Added Generic Converter to the supported 
converter list. 

• Updated example code and documentation 
references.  

• Updated CommProtocol.c(h), HealthData.c(h),  
and examples: CANReceive.c, Heartbeat.c, 
StatusRequest.c. 

• Updated the front page. 

3.0 3.0.0 December 
14, 2022 

Olek 
Bogush 

• Added support for CAN FD Stream.  

• Deprecated support for CAN and Notification 
Stream.  

• Added Communication Node Settings to Status 
Response and Heartbeat messages.  

• Updated CommProtocol.c, CommProtocol.h, and 
examples: CANReceive.c, CANSend.c, 
Heartbeat.c, and StatusRequest.c. 

• Updated Finnish office phone number on the 
front page. 

2.0 2.0.xx April 27, 
2021 

Olek 
Bogush 

• Added support for Axiomatic Wi-Fi to CAN 
converters.  

• Added Converter Type parameter in Heartbeat 
and Status Response messages. 

• Updated Documentation section. 

• Updated CANReceive.c, Heartbeat.c and 
StatusRequest.c examples together with 
Windows.mk and Linux.mk make files. 

1.0A 1.0.xx March 2, 
2017 

Olek 
Bogush 

• In SSP Contents added request to unblock the 
distribution .zip file in Windows. 

1.0 1.0.xx October 
27, 2016 

Olek 
Bogush 

• Initial release. 

 
 
 
 
 
 
 
 
 
 
 
  


