Global Electronic Solutions

User Manual UMAX140910
Version 4.0
Software Support Package 4.0.xx

USER MANUAL

CAN-ENET
Software Support Package

P/N: AX140910

Axiomatic Technologies Oy Axiomatic Technologies Corporation
Hoéytaméntie 6 1445 Courtneypark Dr. E.
33880 LEMPAALA, Finland Mississauga, ON Canada L5T 2E3
Tel. +358 103 375 750 Tel. 1905 602 9270
salesfinland@axiomatic.com sales@axiomatic.com

www.axiomatic.fi www.axiomatic.com

ACRONYMS

API Application Programming Interface

ASCII American Standard Code for Information Interchange
BSD Berkeley Software Distribution

CAN Controller Area Network

HTML HyperText Markup Language

IP Internet Protocol

LAN Local Area Network

SSP Software Support Package

UMAX140910. CAN-ENET Software Support Package. Version 4.0

TABLE OF CONTENTS

1 GENERAL INFORMATION. .. ttttttieeitiiiitiiite et e e e e e sttt e e e e e e e s s saeeeeaeeessssnsnnseeeeeeaeeeennnns 4
P S 1S Y O @ 1\ I = N I 15 PN 5
2 RS 10T o SN 5
2.2 EXAIMPIES ... 6
3 DATATYPES AND CODING STYLE ..ooii oottt e e e 7
A USING SSP oo 8
4.1 Receiving Messages from the CONVEIEr.............uiiiiiii i 8
4.2 Sending Messages to the CONVEIET..........ooo oo 11
4.3 DiscoVvering the CONVEITETcooeeiiiiei et e e e e e e e e e e e e e e aaaaas 12
5 DOCUMENTATION ..ot e e e e e e et e e et e e e et e e e et e e e aa e e eaneeeaneeeanaaees 14
B LICENSE ... e e e e e e et et e e e e e n i raaaaes 15
7 VERSION HISTORY .ottt et e e e e e e e e e et e e e e e e e e e ean e e eanans 16

1l

UMAX140910. CAN-ENET Software Support Package. Version 4.0

1 GENERAL INFORMATION

The CAN-ENET Software Support Package (SSP) provides a set of software modules,
documentation, and examples for developing application software working with various
Axiomatic Ethernet to CAN and Wi-Fi to CAN converters.

The user manual is valid for the SSP with the same two major version numbers as the user
manual. For example, this user manual is valid for any SSP version 4.0.xx. Updates specific to
the user manual are done by adding letters: A, B, ..., Z to the user manual version number.

All SSP software modules are written in a standard C programming language for portability
and fully documented. They provide support for Axiomatic proprietary Communication and
Discovery protocols. The Communication protocol is mainly used for transmitting CAN
messages over Ethernet or any other IP network, and the Discovery protocol — for locating the
converter on the LAN.

The SSP can be equally used for programming embedded systems with limited resources and
for application programming in Windows or Linux.

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 4-16

2 SSP CONTENTS

The SSP is distributed as a zip file with the name: CANEnetSSPv<X.X.XY>. zip, where
<X.X.X>numbers refer to the SSP main version number and <y> — to the optional
documentation change letter.

To avoid potential issues with displaying the SSP help file, the distribution zip file should be
unblocked in Windows if acquired over the internet (after downloading from the Axiomatic
website, receiving in e-mail as an attachment, etc.) This can be done by right-clicking the file
and pressing the Unblock button in Properties->General->Unblock.

After extracting the zip archive, the following folder structure will be created:

CANEnetSSPv4.0.0
Examples
Bin
Inc

Src

Figure 1. Folder Structure for SSP version 4.0.0

The root directory contains the SSP help file CANEnetSSP.chm in the Microsoft HTML help
format and this user manual UMAX140910v4.0.pdf in the Adobe Reader format.

The most significant SSP version number reflects incompatible changes, next — compatible
changes, the last one — minor changes not affecting the SSP functionality. The optional letter is
added for changes in the user manual and/or help file.

2.1 Source Files

The SSP source files are grouped in . \Source and .\Inc directories according to their

type. They are written in standard C and present the following software modules:

e PMessage. Provides support for the protocol independent message structure described in
the Ethernet to CAN Converter Communication Protocol.

e CommProtocol. Supports messages from the Ethernet to CAN Converter Communication
Protocol.

e DiscProtocol. Supports messages from the Ethernet to CAN Converter Discovery
Protocol.

e HealthData. Provides data structures and functions for processing the Ethernet to CAN
converter health status information described in the Ethernet to CAN Converter
Communication Protocol.

All basic data types and common macros are defined in the CommonTypes . h file.

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 5-16

2.2 Examples

The SSP also contains the following example programs in the . \Examples directory
demonstrating different scenarios of communication with the Axiomatic Ethernet to CAN
converter:

CANReceive.c. This console application shows how CAN frames can be received from
the Axiomatic Ethernet to CAN converter.

CANSend.c. This example demonstrates how CAN frames can be sent to the Axiomatic
Ethernet to CAN converter.

Discovery.c. This example application shows how the user can discover an Axiomatic
Ethernet to CAN converter on the local area network (LAN).

Heartbeat.c. This application demonstrates how Heartbeat messages can be received
from the Axiomatic Ethernet to CAN converter. It also shows unpacking of the Health Data
from Heartbeat messages.

StatusRequest.c. This example application shows how the user can request the
Axiomatic Ethernet to CAN converter status.

All examples can be built on Microsoft Windows or Linux using Windows .mk Or Linux.mk
make files. The make files are also located in the . \Examples directory.

Upon building executable files, the make script, if necessary, creates . \Bin subdirectory in
the . \Examples directory where it places all executable and object files. The SSP zip file
contains compiled examples for Windows in the . \Bin subdirectory.

All SSP examples were tested on Windows 10 and Linux Ubuntu 16.04.

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 6-16

3 DATA TYPES AND CODING STYLE

The SSP uses only int and char standard data types. The int type is used when the exact
or maximum data size for the integer parameter is not critical. The char type is used to point
to an ASCII string or reference a single ASCII character. Other basic types are derived from
<stdint.h> header and have the exact data size, except the Boolean type BOOL t, which is
derived from int, see: CommonTypes.h file.

All SSP exported basic types are named with capital letters and have the ' t' ending. For
example: BOOL_t, WORD_t, etc.

All other exported types are named with capital letters, have the ' t' ending and are prefixed
with the file abbreviation for the file they are defined in. The 'CP' is used for the
CommProtocol.h, 'DP' -forthe DiscProtocol.h, "HD' - for the HealthData.h and
'PM' - for the PMessage.h file.

All macros names use capital letters and are prefixed with the file abbreviation for the file they
are defined in, the same way as data types. The 'CT' abbreviation is used for the
CommonTypes.h file.

The variable names are prefixed with their type for basic types and pointers. For example: int
type is prefixed with 'i ', pointer type - with 'p', pointer to integer - with 'pi', etc.
Structures, unions, enumerators are not prefixed. For zero terminated strings, the 'sz ' prefix
is used.

The function names are prefixed with the file abbreviation the same way as data types and
macros.

One tab is equal to four spaces.

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 7-16

4 USING SSP

The user should add the SSP files to the application project. The CommProtocol.c or
DiscProtocol.c can be excluded if the appropriate protocol is not used. The
HealthData.c can also be excluded if there is no need to process the converter health data.

The SSP does not require initialization prior to use. It does not have any global variables. All
SSP functions are thread-safe and reentrant.

For sending and receiving converter messages, a support of the Internet protocol (IP) is
required. A standard way to provide this support is to use Internet sockets. The socket API is
well standardized and is used in all SSP examples and for description of the converter
operations.

4.1 Receiving Messages from the Converter

The user should first prepare a socket for receiving the converter data.

When the data is received, it should be passed to the PMParseFromBuffer () function. The
user provides two callback functions: OnDataParsed () and OnDataParsedError (). The
first function is invoked after the protocol message has been successfully parsed and the
second one — on the parsing error.

Then, the user should call parsers for individual protocol-specific messages inside the
OnDataParsed () function, see below:

BYTE t RxData[PM PROTOCOL MESSAGE BUFFER SIZE];
PM_PROTOCOL_PARSER_t PParser;
int iBytesReceived;

/* Initializing the parser */
memset (&PParser, 0, sizeof (PParser));

/** Receiving data in the RxData buffer.
* iSocket - the socket descriptor. The socket should be already initialized and ready
* for receiving.
*
=/
iBytesReceived = recv(iSocket, RxData, sizeof (RxData), 0);
if (iBytesReceived > 0)
{
/** Data has been successfully received.
* Now we are calling the protocol message parser.
*
*/
PMParseFromBuffer (RxData, iBytesReceived, &PParser, OnDataParsed, OnDataParsedError,
NULL) ;
}

/* This function is called after the protocol message has been successfully parsed. */
void OnDataParsed (PROTOCOL MESSAGE t *pPMessage, void *arg)
{

DWORD t dwHealthData, dwCANRxDErrors, dwCANTxDErrors, dwCANBusOffErrors;

DWORD t dwMessageNumber, dwTimeInterval;

CP_CONVERTER TYPE t ConverterType;

DWORD dwCommNodeSupportedFeatures;

CP_COMMUNICATION NODE FILTER LIST t CommNodeFilterList;

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 8-16

/* Parsing Communication Protocol Messages. */

/** Parsing CAN FD Stream. Added in SSP version 3.0.0.

*
* The CPParseCANFDStream() parser is provided with a callback function which is
* called on successful parsing of a CAN FD frame. The CAN FD frame can also contain
* a Classical CAN frame.
* The callback functions can be called multiple times if several CAN FD frames are
* embedded in one protocol message.
*
*/
if (CPParseCANFDStream (pPMessage, OnCANFDFrameParsed, arg))

/* The CAN FD Stream has been parsed. Add your code here if necessary. */

return;

—

/
CPParseCANDataAndNotificationStream (pPMessage, OnCanFrameParsed,
OnNotificationFrameParsed, arqg))

/** Parsing CAN and Notification Stream. Deprecated in SSP v3.0.0 and used only for
* compatibility with older software. The new software should use CAN FD Stream
* with CPParseCANFDStream() parser.
*
* The CPParseCANDataAndNotificationStream() parser is provided with two callback
* functions, which are called on successful parsing of CAN or Notification frames.
* The callback functions can be called multiple times if several CAN or Notification
* frames are embedded in one protocol message.
*
*
(

if

/* The CAN and Notification Stream has been parsed. Add your code here
if necessary. */

return;

}

/** Parsing Communication Protocol Status Request Message.
*/

if (CPParseStatusRequest (pPFrame)

{

~
*
*

The Status Request Message has been received.

Reply with Status Response Message to let the requesting node know whether
the CAN FD stream is supported by your node and convey other communication
settings to the requested node. Nodes supporting CAN FD Stream will not start
sending CAN frames to your node until they acquire communication settings

of your node either through a Status Response or a Heartbeat message.

Add your code here.

% ok X ok o X X X o

return;

}

/** Parsing Communication Protocol Status Response Message.
*/
if (CPParseStatusResponse (pPFrame, &dwHealthData, &dwCANRxDErrors, &dwCANTxDErrors,
&dwCANBusOffErrors, &ConverterType,
&dwCommNodeSupportedFeatures, &CommNodeFilterList))

/** The Status Response Message has been parsed.

*

dwCommNodeSupportedFeatures and CommNodeFilterList structure contain
communication settings of the node.
dwCommNodeSupportedFeatures defines whether the node supports CAN FD Stream

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 9-16

>*

*

* (CP_SUPPORTED FEATURE FLAG CAN FD STREAM flag is set) and if the node requests
* only one CAN FD Frame per Ethernet frame
* (CP_SUPPORTED FEATURE FLAG CAN FD STREAM ONE FRAME PER MESSAGE flag is set)
* CommNodeFilterList structure contains filter addresses to filter CAN FD
* Frames sent to the node.
*
* Add your code here.
*
*/
return;

}

/** Parsing Heartbeat Message.
=/
If (CPParseHeartbeat (pPFrame, &dwMessageNumber, &dwTimelInterval, &dwHealthData,
&ConverterType, &dwCommNodeSupportedFeatures, &CommNodeFilterList))
{

/** The Heartbeat Message has been parsed.

*
* dwCommNodeSupportedFeatures and CommNodeFilterList structure contain
* communication settings of the node.
* dwCommNodeSupportedFeatures defines whether the node supports CAN FD Stream
* (CP_SUPPORTED FEATURE FLAG CAN FD STREAM flag is set) and if the node requests
* only one CAN FD Frame per Ethernet frame
* (CP_SUPPORTED FEATURE FLAG CAN FD STREAM ONE FRAME PER MESSAGE flag is set) .
* CommNodeFilterList structure contains filter addresses to filter CAN FD
* Frames sent to the node.
*
* Add your code here.
*
*/
return;

}

/** Unknown protocol message
*
*/
printf ("Error. Unknown protocol message. ProtocolID=%u MessageID=%u\n",
pPMessage->wProtocolID, pPMessage->wMessagelD) ;

/** This function is called after a CAN FD frame has been successfully parsed.
* The CP_CAN FD FRAME t structure contains either CAN FD or Classical CAN frame.

void OnCANFDFrameParsed(CP_CAN FD FRAME t *pCANFDFrame,CP_CAN FRAME ROUTING DATA t

*pCANFrameRoutingData, DNORD t dwAbsTimeStamp,void *arg)

/* Add your code here */

/** This function is called after a Classical CAN Frame has been successfully parsed.
Deprecated in SSP v3.0.0

void OnCanFrameParsed (CP_CAN FRAME t *pCANFrame,void *arg)

/* Add your code here */

/** This function is called after a Notification Frame has been successfully parsed.
* Deprecated in SSP v3.0.0

void OnNotificationFrameParsed(CP_NOTIFICATION FRAME t *pNotificationFrame,void *arg)

/* Add your code here */

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 10-16

If the user wants to parse the dwHealthData value into individual operational statuses of the
converter major hardware and software components, the HDUnpackHealthData () function
should be called:

DWORD dwHealthData;

HD HEALTH DATA t HealthData;
CP_CONVERTER TYPE t ConverterType;

HD OPERATIONAL STATUS t ConverterHealthStatus;

ConverterHealthStatus = HDUnpackHealthData (dwHealthData, &HealthData, ConverterType) ;

This function also returns the converter aggregated Health Status.
4.2 Sending Messages to the Converter

User messages can be sent to the converter by first generating the required protocol message
and then copying the message to the transmitting buffer. For example, sending a status
request will require the following commands:

BYTE t TxData[PM PROTOCOL MESSAGE BUFFER SIZE];
PM PROTOCOL MESSAGE t PMessage;

BOOL t bResult;

int iBytesToSend;

int iBytesSent;

/* Preparing the Status Request message. */

CPGenStatusRequestMessage (&PMessage) ;

/* Copying the message to the transmit buffer TxData. */

bResult = PMCopyToBuffer (&PMessage, TxData, sizeof (TxData), &iBytesToSend):;
assert (bResult) ;

/* Sending the Status Request message.
iSocket - the socket descriptor. The socket should be already initialized and
ready for sending. */

iBytesSent=send (iSocket, TxData, iBytesToSend,0);

Sending CAN FD frames is more elaborated. The CAN FD Stream message can contain more
than one CAN FD or Classical CAN frame, unless
CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE
flag is set by the node in the Status Response or Heartbeat message. It is also highly desirable
to check whether the node will accept the frame before preparing and sending it.

To send a CAN FD frame, the user should first prepare an empty CAN FD Stream message
and then add CAN frames to it.

BYTE t TxData[PM PROTOCOL MESSAGE BUFFER SIZE];
PM PROTOCOL MESSAGE t PMessage;
CP_CAN FD FRAME t CANFDFrame;

CP_CAN FRAME ROUTING DATA t CANFrameRoutingData;
DWORD t dwAbsoluteTimeStamp;

BOOL t bResult;

int iBytesToSend;

int iBytesSent;

/** Checking whether the CAN FD Stream will be accepted by the node.
*

* dwCommNodeSupportedFeatures and CommNodeFilterList values should be already

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 11-16

* acquired from the node in Status Response and Hearbeat messages. If not, the values
* of dwCommNodeSupportedFeatures and CommNodeFilterList should be all 0, and the CAN FD
* Stream will not be sent.
*
*/
if ((CP_SUPPORTED FEATURE FLAG CAN FD STREAM &

dwCommNodeSupportedFeatures)==0) return; // CAN FD Stream will not be sent

/* Preparing an empty CAN FD Stream message */
CPPrepareCANFDStream (&PMessage) ;

/** Adding CAN frames to the CAN FD Stream.
*
* CPIsCANFDFrameFit () checks if there is enough room for the CAN FD frame to fit into
* the CAN FD Stream. If only Classical CAN frames are used, CPIsCANFDFrameFit () can be
* replaced with CPIsCANClassicalCANFDFrameFit () .
* CANGetFDFrame () gets a CAN FD frame (or a Classical CAN frame in the CAN FD Frame
* format), CAN frame routing data, and an absolute timestamp (in ms) from a CAN port
* driver or from another source.
* CPAddCANFDFrame () adds CAN FD frame to the stream.
*
*/

while (CPIsCANFDFrameFit (&PMessage))

{
CANGetFDFrame (&CANFDFrame, &CANFrameRoutingData, &dwAbsoluteTimeStamp) ;

if (!CPIsCANAddressPassCommNodeFilter (&§CANFrameRoutingData.CANAddr,
&CommNodeFilterList)) break;

CPAddCANFDFrame (&PMessage, &CANFDFrame, & CANFrameRoutingData, dwAbsoluteTimeStamp) ;
if ((CP_SUPPORTED FEATURE FLAG CAN FD STREAM ONE FRAME PER MESSAGE &
dwCommNodeSupportedFeatures)>0) break;
}

/* Copying the message to the transmit buffer TxData. */
bResult = PMCopyToBuffer (&PMessage, TxData, sizeof (TxData), &iBytesToSend);
assert (bResult) ;

/** Sending the CAN FD Stream message.
*

* iSocket - the socket descriptor. The socket should be already initialized and

* ready for sending.
*

&l
iBytesSent=send (iSocket, TxData, iBytesToSend,0);

If the TCP protocol is used, the TCP_ NODELAY option should be set to the socket to avoid
delays in sending protocol messages.

4.3 Discovering the Converter

The converter can be discovered using the Ethernet to CAN Converter Discovery Protocol.
The user should do the following:

e Open a datagram socket with the SO BROADCAST option.

Prepare a discovery request and copy it to the transmitting buffer.

Send the discovery request to the global IP address.

Wait for the incoming discovery responses from converters located on the same LAN.
Parse the responses first by PMParseFromBuffer () and then by DPParseResponse ()
called from OnDataParsed () .

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 12-16

A simplified example code illustrating the concept is presented below:

BYTE_t TxData[PM PROTOCOL MESSAGE_ BUFFER SIZE];
BYTE t RxData[PM PROTOCOL MESSAGE BUFFER SIZE];
PM PROTOCOL_MESSAGE_t PMessage;

PM PROTOCOL PARSER t PParser;

struct sockaddr in SocketAddress;

BOOL t bResult;

int iBytesToSend;
int iBytesSent;

int iBytesReceived;

/* Preparing the Discovery Request message. */

DPGenRequestMessage (&PMessage) ;

/* Copying the message to the transmit buffer TxData. */

bResult = PMCopyToBuffer (&PMessage, TxData, sizeof (TxData), &iBytesToSend);
assert (bResult) ;

/* Preparing the global socket address */

memset (&SocketAddress, 0, sizeof (SocketAddress));
SocketAddress.sin family = AF INET;
SocketAddress.sin addr.s addr = inet addr("255.255.255.255");
SocketAddress.sin_port = htons (DP_DISCOVERY PORT) ;

/* Initializing the parser */
memset (&PParser, 0, sizeof (PParser));

/* Sending the Discovery Request message to the global address.
iSocket - the socket descriptor. The socket should be already initialized and
ready for sending to the global address. */
iBytesSent = sendto(iSocket, TxData, iBytesToSend, 0, (struct sockaddr *) &SocketAddress,
sizeof (SocketAddress)) ;
if (iBytesSent != SOCKET_ ERROR)
{

/* Now we are waiting for the reply from the converter */

iBytesReceived = recv(iSocket, RxData, sizeof (RxData), O0);
if (iBytesReceived > 0)
{
/* Reply has been arrived. Parsing it. */
PMParseFromBuffer (RxData, iBytesReceived, &PParser, OnDataParsed, NULL, NULL) ;

}

/* This function is called after the protocol message has been successfully parsed. */
void OnDataParsed (PROTOCOL MESSAGE t *pPMessage, void *arq)
{

DP_DISCOVERY DATA DiscData;

/* Parsing the Discovery Response Message. */
if (DPParseResponse (pPMessage, &DiscData))
{
/* The Discovery Response Message has been successfully parsed.
The converter information is in the DiscData structure.
Add your code here to process this information. */

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 13-16

5 DOCUMENTATION

The following documents describing the Axiomatic proprietary protocols used in the SSP are

available upon request:

e O. Bogush, "Ethernet to CAN Converter Communication Protocol. Document version: 6,"
Axiomatic Technologies Corporation, April 22, 2025.

e O. Bogush, "Ethernet to CAN Converter Discovery Protocol. Document version: 1A,"
Axiomatic Technologies Corporation, April 5, 2021.

e O. Bogush, " Ethernet to CAN Converter Health Status. Document version: 4," Axiomatic
Technologies Corporation, April 22, 2025.

For requesting the documents, please contact Axiomatic Technologies at:
sales@axiomatic.com

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 14-16

mailto:sales@axiomatic.com

6 LICENSE

The SSP software is distributed with a permissive 3-clause BSD License. The text of the
license is included in the software files.

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 15-16

7 VERSION HISTORY

User

Manual SSP. Date Author Modifications
Version | VErsion
4.0 4.0.0 April 23, Olek e Changed communication node setting
2025 Bogush parameters in Status Response and Heartbeat
messages.
e Added Generic Converter to the supported
converter list.
o Updated example code and documentation
references.
¢ Updated CommProtocol.c(h), HealthData.c(h),
and examples: CANReceive.c, Heartbeat.c,
StatusRequest.c.
e Updated the front page.
3.0 3.0.0 December | Olek e Added support for CAN FD Stream.
14, 2022 Bogush | e Deprecated support for CAN and Notification
Stream.
¢ Added Communication Node Settings to Status
Response and Heartbeat messages.
¢ Updated CommProtocol.c, CommProtocol.h, and
examples: CANReceive.c, CANSend.c,
Heartbeat.c, and StatusRequest.c.
¢ Updated Finnish office phone number on the
front page.
2.0 2.0.xx April 27, Olek e Added support for Axiomatic Wi-Fi to CAN
2021 Bogush converters.
¢ Added Converter Type parameter in Heartbeat
and Status Response messages.
¢ Updated Documentation section.
e Updated CANReceive.c, Heartbeat.c and
StatusRequest.c examples together with
Windows.mk and Linux.mk make files.
1.0A 1.0.xx March 2, Olek e In SSP Contents added request to unblock the
2017 Bogush distribution .zip file in Windows.
1.0 1.0.xx October Olek e Initial release.
27, 2016 Bogush

UMAX140910. CAN-ENET Software Support Package. Version 4.0 Page: 16-16

